The Snake Lemma

Theorem Consider a commutative diagram of R-modules of the form

$$\begin{array}{ccc} A' \xrightarrow{\alpha_1} B' \xrightarrow{\beta_1} C' \longrightarrow 0 \\ \downarrow^f & \downarrow^g & \downarrow^h \\ 0 \longrightarrow A \xrightarrow{\alpha_2} B \xrightarrow{\beta_2} C \end{array}$$

If the rows are exact, then there is an exact sequence

$$\ker(f) \to \ker(g) \to \ker(h) \xrightarrow{\delta} \operatorname{coker}(f) \to \operatorname{coker}(g) \to \operatorname{coker}(h)$$

where $\delta : \ker(h) \to \operatorname{coker}(f)$ is the map $\delta(c') = \alpha_2^{-1}g\beta_1^{-1}(c')$. Furthermore, if $A' \to B'$ is monic, then so is $\ker(f) \to \ker(g)$, and if $B \to C$ is epi, then so is $\operatorname{coker}(g) \to \operatorname{coker}(h)$.

Proof. The snake picture to have in mind is as follows:

Notice that the columns create long exact sequences:

We first show that the maps ker $f \xrightarrow{\widetilde{\alpha_1}} \ker g$, ker $g \xrightarrow{\widetilde{\beta_1}} \ker h$, coker $f \xrightarrow{\widetilde{\alpha_2}} \operatorname{coker} g$, and coker $g \xrightarrow{\widetilde{\beta_2}} \operatorname{coker} h$ are well-defined, where the kernel maps are restriction of the corresponding $A' \xrightarrow{\alpha_1} B'$ and $B' \xrightarrow{\beta_1} C'$ and the cokernel maps are restriction of the corresponding $A \xrightarrow{\alpha_2} B$ and $B \xrightarrow{\beta_2} C$.

Let $a' \in \ker f$. We need to show that $\widetilde{\alpha_1}(a') \in \ker g$. As $\ker f \hookrightarrow A'$, $a' \in A'$. As $a' \in \ker f$, f(a') = 0, and $\alpha_2 f(a') = 0$. As the square commutes, $g\alpha_1(a') = 0$, so $\alpha_1(a') \in \ker g$, and thus $\widetilde{\alpha_1}(a') = \alpha_1(a') \in \ker g$.

Let $b' \in \ker g$. We need to show that $\beta_1(b') \in \ker h$. As $\ker g \hookrightarrow B'$, $b' \in B'$. As $b' \in \ker g$, g(b') = 0, and $\beta_2 g(b') = 0$. As the square commutes, $h\beta_1(b') = 0$, so $\beta_1(b') \in \ker h$, and thus $\beta_1(b') = \beta_1(b') \in \ker h$.

Let $a \in \operatorname{coker} f = A_{\operatorname{im} f}$. We need to show that $\widetilde{\alpha_2}(a) \in \operatorname{coker} g = B_{\operatorname{im} g}$. In other words, we must show that $\alpha_2 : A \to B$ maps elements in the image of f to elements in the image of g. Let $a' \in A'$. Then $f(a') \in A$ is in the image of f, and α_2 maps it to $\alpha_2 f(a')$. By the commutativaty of the square, $\alpha_2 f(a') = g\alpha_1(a')$, so α_2 maps an element in the image of f to an element in the image of g, as desired.

Let $b \in \operatorname{coker} g = B_{\operatorname{im} g}$. We need to show that $\widetilde{\beta_2}(b) \in \operatorname{coker} h = C_{\operatorname{im} h}$. In other words, we must show that $\beta_2 : B \to C$ maps elements in the image of g to elements in the image of h. Let $b' \in B'$. Then $g(b') \in B$ is in the image of g, and β_2 maps it to $\beta_2 g(b')$. By the commutativity of the square, $\beta_2 g(b') = h\beta_1(b')$, so β_2 maps an element in the image of g to an element in the image of h, as desired.

$\begin{bmatrix} g & \end{bmatrix}$	L
$ \begin{array}{c} \downarrow & \stackrel{*}{B} & \xrightarrow{\beta_2} \downarrow \\ g(b') & \longmapsto & h\beta_1(b') \end{array} \xrightarrow{\beta_2} \begin{array}{c} \downarrow \\ \downarrow $	п , ,

We next show exactness of ker $f \xrightarrow{\widetilde{\alpha_1}} \ker g \xrightarrow{\widetilde{\beta_1}} \ker h \xrightarrow{\delta} \operatorname{coker} f \xrightarrow{\widetilde{\alpha_2}} \operatorname{coker} g \xrightarrow{\widetilde{\beta_2}} \operatorname{coker} h$ at all stages except δ .

To see that $\operatorname{im} \widetilde{\alpha_1} = \ker \widetilde{\beta_1}$, we first show that $\operatorname{im} \widetilde{\alpha_1} \subseteq \ker \widetilde{\beta_1}$. Indeed, let $x \in \operatorname{im} \widetilde{\alpha_1}$. Then we compute $\widetilde{\beta_1}(x)$. Since $x \in \operatorname{im} \widetilde{\alpha_1}$, there is some $w \in \ker f$ such that $\widetilde{\alpha_1}(w) = x$. Then $\alpha_1(w) = x$ in B', and by exactness of $A' \to B' \to C'$, $\beta_1(x) = 0$. By injectivity of $\ker h \to C'$ and commutativity of the square, $\widetilde{\beta_1}(x) = 0$, so $x \in \ker \widetilde{\beta_1}$, as desired.

We next show that $\ker \widetilde{\beta_1} \subseteq \operatorname{im} \widetilde{\alpha_1}$. Let $x \in \ker \widetilde{\beta_1}$; then $\widetilde{\beta_1}(x) = 0$. Thus, $\beta_1(x) = 0$, and by exactness of $A' \to B' \to C'$, $x \in \operatorname{im} \alpha_1$, so there exists $w \in A'$ such that $\alpha_1(w) = x$. If $w \in \ker f$, we are done, for then $\widetilde{\alpha_1}(w) = \alpha_1(w) = x$, and $x \in \operatorname{im} \widetilde{\alpha_1}$, as desired. To see that $w \in \ker f$, see that $x \in \ker g$, so g(x) = 0. By commutativity of the square, $\alpha_2 f(w) = 0$. By injectivity of α_2 , f(w) = 0, and thus $w \in \ker f$, as we needed to show.

To see that $\operatorname{im} \widetilde{\alpha_2} = \ker \widetilde{\beta_2}$, we first show that $\operatorname{im} \widetilde{\alpha_2} \subseteq \ker \widetilde{\beta_2}$. Indeed, let $\overline{x} \in \operatorname{im} \widetilde{\alpha_2}$. Then we compute $\widetilde{\beta_2}(\overline{x})$. Since $\overline{x} \in \operatorname{im} \widetilde{\alpha_2}$, there is some $\overline{w} \in \operatorname{coker} f$ such that $\widetilde{\alpha_2}(\overline{w}) = \overline{x}$. Then $\alpha_2(w) = x$ in B for some representatives w and x, and by exactness of $A \to B \to C$, $\beta_2(x) = 0$. By commutativity of the square, $\widetilde{\beta_2}(\overline{x}) = 0$, so $\overline{x} \in \ker \widetilde{\beta_2}$, as desired.

We next show that $\ker \beta_2 \subseteq \operatorname{im} \widetilde{\alpha_2}$. Let $\overline{x} \in \ker \beta_2$; then $\beta_2(\overline{x}) = 0$. 0 lifts to some element $h(y) \in C$ where $y \in C'$, while \overline{x} lifts to x. By surjectivity of β_1 , there is some $z \in B'$ such that $\beta_1(z) = y$. By commutativity of the square, $\beta_2 g(z) = h(y)$. Also, $\beta_2(x) = h(y)$. Thus, $x - g(z) \in \ker \beta_2$, and by exactness of $A \to B \to C$, there is some $w \in A$ such that $\alpha_2(w) = x - g(z)$. Taking equivalence classes, we have $\widetilde{\alpha_2}(\overline{w}) = \overline{x - g(z)} = \overline{x}$ in $B'_{\operatorname{im} q}$, and thus $\overline{x} \in \operatorname{im} \widetilde{\alpha_2}$, as desired.

Next, we show δ is a well-defined map. Recall that δ : ker $h \to \operatorname{coker} f$ is defined to be $\alpha_2^{-1}g\beta_1^{-1}$. Let $c' \in \ker h$; then $c' \in C'$. As β_1 is surjective, there exists some $b' \in B'$ such that $\beta_1(b') = c'$. Map b' to g(b') in B; then by commutativity of the following square:

 $\beta_2 g(b') = 0$, so $g(b') \in \ker \beta_2 = \operatorname{im} \alpha_2$. Thus there exists $a \in A$ such that $\alpha_2(a) = g(b')$. Define $\delta(c') = \overline{a}$. It remains to be seen that δ does not depend on the choice of b' or a.

Suppose b' and \tilde{b}' both are such that $\beta_1(b') = \beta_1(\tilde{b}') = c'$. Then $\beta_1(\tilde{b}'-b') = 0$, so $\tilde{b}'-b' \in \ker \beta_1 = \operatorname{im} \alpha_1$, so $\alpha_1(\tilde{a}') = \tilde{b}' - b'$ for some $\tilde{a}' \in A'$; i.e., $\tilde{b}' = \alpha_1(\tilde{a}') + b'$. Then $g(\tilde{b}') = g(\alpha_1(\tilde{a}') + b') = g\alpha_1(\tilde{a}') + g(b')$. By commutativity of the square, $g\alpha_1(\tilde{a}') = \alpha_2 f(\tilde{a}')$, so

$$g(\tilde{b}') = g\alpha_1(\tilde{a}') + g(b')$$

= $\alpha_2 f(\tilde{a}') + \alpha_2(a)$
= $\alpha_2 (f(\tilde{a}') + a),$

and then taking an equivalence class, $\overline{f(\tilde{a}') + a} = \overline{a}$ in $A_{\text{im} f}$, so δ does not depend on the choice of b'. Suppose a and \tilde{a} are both such that $\alpha_2(a) = \alpha_2(\tilde{a}) = g(b')$. As α_2 is injective, $a = \tilde{a}$.

Now we show exactness at δ .

To see that $\operatorname{im} \widetilde{\beta_1} = \ker \delta$, we first show that $\operatorname{im} \widetilde{\beta_1} \subseteq \ker \delta$. Let $x \in \operatorname{im} \widetilde{\beta_1}$; i.e., there exists $w \in \ker g$ such that $\widetilde{\beta_1}(w) = x$; we need to show $\delta(x) = 0$. See that

$$\delta(x) = \alpha_2^{-1} g \beta_1^{-1}(x)$$

As δ is independent of choice, choose $w \in \ker g \subseteq B'$ to be $\beta_1^{-1}(x)$. Then

$$\alpha_2^{-1}g\beta_1^{-1}(x) = \alpha_2^{-1}g(w) = \alpha_2^{-1}(0) = 0,$$

and $x \in \ker \delta$, as desired.

We next show that $\ker \delta \subseteq \operatorname{im} \widetilde{\beta_1}$. Let $x \in \ker \delta$; i.e., $\delta(x) = 0$. We need to show that there exists $w \in \ker g$ such that $\widetilde{\beta_1}(w) = x$. Since

$$\delta(x) = \alpha_2^{-1} g \beta_1^{-1}(x) = 0,$$

 $\delta(x)$ lifts to an element $f(y) \in A$ for some $y \in A'$. By commutativity of the square

so $\beta_1^{-1}(x) - \alpha_1(y) \in \ker g$. Thus let $w = \beta_1^{-1}(x) - \alpha_1(y) \in \ker g$, and

$$\widetilde{\beta_1}(w) = \widetilde{\beta_1}(\beta_1^{-1}(x) - \alpha_1(y)) = \beta_1(\beta_1^{-1}(x) - \alpha_1(y)) = \beta_1\beta_1^{-1}(x) - \beta_1\alpha_1(y) = x - 0 = x$$

as desired.

To see that $\operatorname{im} \delta = \operatorname{ker} \widetilde{\alpha_2}$, we first show that $\operatorname{im} \delta \subseteq \operatorname{ker} \widetilde{\alpha_2}$. Let $\overline{x} \in \operatorname{im} \delta$; i.e., there exists $w \in \operatorname{ker} h$ such that $\delta(w) = \overline{x}$; we need to show that $\widetilde{\alpha_2}(\overline{x}) = 0$. See that

$$\delta(w) = \alpha_2^{-1} g \beta_1^{-1}(w) = \overline{x}$$
$$\alpha_2 \alpha_2^{-1} g \beta_1^{-1}(w) = \alpha_2(\overline{x})$$
$$g \beta_1^{-1}(w) = \alpha_2(\overline{x}),$$

so $\alpha_2(\overline{x})$ is in the image of g, and hence its equivalence class, equal to $\widetilde{\alpha_2}(\overline{x})$ by commutativity of the square

is 0 in $\xrightarrow{B'_{\text{im }q}}$. Thus $\overline{x} \in \ker \widetilde{\alpha_2}$.

We next show that $\ker \widetilde{\alpha_2} \subseteq \operatorname{im} \delta$. Let $\overline{x} \in \ker \widetilde{\alpha_2}$; i.e., $\widetilde{\alpha_2}(\overline{x}) = 0$. We need to show that there exists $w \in \ker h$ such that $\delta(w) = \overline{x}$. As $\widetilde{\alpha_2}(\overline{x}) = 0$ in $B_{\operatorname{im} g}$, it lifts to an element $g(y) \in B$ where $y \in B'$, and the following square commutes:

Take $w = \beta_1(y)$. It is enough to show that $w \in \ker h$, for then

$$\delta(w) = \alpha_2^{-1} g \beta_1^{-1}(w) = \alpha_2^{-1} g \beta_1^{-1} \beta_1(y) = \alpha_2^{-1} g(y) = \overline{x},$$

as desired. To see that $w \in \ker h$, see that $h(w) = h\beta_1(y)$ is, by the commutativity of the square below,

 $\beta_2 g(y)$. Now, $g(y) = \alpha_2(x)$, so $\beta_2 g(y) = \beta_2 \alpha_2(x) = 0$, and $w \in \ker h$, as desired.

Finally, assume $A' \to B'$ is monic and $B \to C$ is epi. We show ker $f \to \ker g$ is monic and coker $g \to \operatorname{coker} h$ is epi.

If $A' \xrightarrow{\alpha_1} B'$ is monic, then $\alpha_1(x) = 0$ implies x = 0. We need to show that if $\widetilde{\alpha_1}(x) = 0$, then x = 0. Suppose $\widetilde{\alpha_1}(x) = 0$. By definition, $\widetilde{\alpha_1}(x) = \alpha_1(x) = 0$, so x = 0 in B'. As ker $g \hookrightarrow B'$ is injective, x = 0 in ker g, as desired.

If $B \xrightarrow{\beta_2} C$ is epi, then for any $c \in C$, there exists $b \in B$ such that $\beta_2(b) = c$. We need to show that if $\overline{c} \in C_{im h}$, then there exists $\overline{b} \in B_{im g}$ such that $\widetilde{\beta_2}(\overline{b}) = \overline{c}$. Let $\overline{c} \in C_{im h}$. It has some lift $c \in C$. By surjectivity of β_2 , there exists $b \in B$ such that $\beta_2(b) = c$. Take the equivalence class of b, namely \overline{b} , and then by commutativity of

 $\widetilde{\beta_2}(\overline{b}) = \overline{c}$, as desired.