The Snake Lemma

Theorem Consider a commutative diagram of R-modules of the form
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If the rows are exact, then there is an exact sequence
ker(f) — ker(g) — ker(h) AN coker(f) — coker(g) — coker(h),

where § : ker(h) — coker(f) is the map 8(¢') = ay ‘B (¢). Furthermore, if A" — B’ is monic, then so
is ker(f) — ker(g), and if B — C is epi, then so is coker(g) — coker(h).

Proof. The snake picture to have in mind is as follows:
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Notice that the columns create long exact sequences:
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We first show that the maps ker f 2% ker g, ker g 2 ker h, coker f 22 coker g, and coker g 22 coker h
are well-defined, where the kernel maps are restriction of the corresponding A’ = B’ and B’ B, o and

the cokernel maps are restriction of the corresponding A <% B and B LicNYel
Let o' € ker f. We need to show that aj(a’) € kerg. Asker f — A’ a’ € A'. Asa’ € ker f, f(d') =0,
and asf(a’) = 0. As the square commutes, gay(a’) = 0, so a;(a’) € ker g, and thus a1(a’) = a1(a’) € ker g.
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Let b’ € kerg. We need to show that E(b’) € kerh. Askerg — B, b € B’. AsbV € kerg, g(b') =0, and
Bag(b') = 0. As the square commutes, h51(b') =0, so B1(b') € ker h, and thus 81 (V') = 51 (V') € ker h.
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Let a € coker f = A/im f We need to show that az(a) € cokerg = B/img' In other words, we must show

that aig : A — B maps elements in the image of f to elements in the image of g. Let a’ € A’. Then f(a’) € A
is in the image of f, and as maps it to asf(a’). By the commutativaty of the square, asf(a’) = ga;(a’), so
a2 maps an element in the image of f to an element in the image of g, as desired.
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Let b € cokerg = B/im g We need to show that 35(b) € coker h = C/im p- In other words, we must show
that B3 : B — C maps elements in the image of ¢ to elements in the image of h. Let &’ € B’. Then g(b') € B
is in the image of g, and B2 maps it to S2g(b’). By the commutativity of the square, S2g(b’') = hB1(b'), so B2
maps an element in the image of g to an element in the image of h, as desired.
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We next show exactness of ker f 9, ker g 21 ker b 25 coker f 22, coker g 22 coker h at all stages except
J.

To see that im a7 = ker 31, we first show that ima; C ker 3;. Indeed, let x € ima;. Then we compute
Bi1(x). Since = € imay, there is some w € ker f such that a3(w) = z. Then a;(w) = x in B’, and by
exactness of A’ — B’ — (', fi(x) = 0. By injectivity of kerh — C’ and commutativity of the square,
B1(z) =0, so z € ker 81, as desired.
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We next show that ker 81 C imaj. Let « € ker 81; then S1(x) = 0. Thus, £1(z) = 0, and by exactness of
A" — B' = C', x € imay, so there exists w € A’ such that a;(w) = z. If w € ker f, we are done, for then
a1(w) = o (w) =z, and = € imaq, as desired. To see that w € ker f, see that = € kerg, so g(z) = 0. By
commutativity of the square, s f(w) = 0. By injectivity of asg, f(w) = 0, and thus w € ker f, as we needed
to show.
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To see that im ap = ker B;, we first show that im ay C ker B; Indeed, let T € im az. Then we compute
E(E) Since T € im ag, there is some W € coker f such that az(w) = T. Then as(w) = x in B for some
representatives w and z, and by exactness of A - B — C, fa(x) = 0. By commutativity of the square,
B\;(E) =0,80T € ker E;, as desired.
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We next show that ker 8 C im @. Let T € ker B; then B;(T) = 0. 0 lifts to some element h(y) € C' where
y € C', while T lifts to x. By surjectivity of 31, there is some z € B’ such that $;(z) = y. By commutativity
of the square, B2g(z) = h(y). Also, B2(x) = h(y). Thus, x — g(2) € ker B3, and by exactness of A - B — C,
there is some w € A such that as(w) = z — g(z). Taking equivalence classes, we have az(W) == — g(z) =T

in B/imgv and thus T € im ag, as desired.
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Next, we show § is a well-defined map. Recall that & : ker h — coker f is defined to be ap1gB8; . Let
¢ € ker h; then ¢ € C’. As f3; is surjective, there exists some b’ € B’ such that 8;(b') = ¢’. Map b’ to g(b')
in B; then by commutativity of the following square:
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Bag(b') =0, s0 g(V') € ker B2 = im ao. Thus there exists a € A such that as(a) = g(b'). Define §(¢’) =a. It
remains to be seen that ¢ does not depend on the choice of b’ or a. _

Suppose b’ and b’ both are such that Bi(b) = B (') = ¢. Then B (V' =b)=0,s0 b0 —b €ker By = imay,
s0 oy (@) = b — b for some @ € A'; ice., V' = a1 (@) + . Then g(b') = g(ay (@) + V') = gay (@) + g(v'). By
commutativity of the square, gay (a’) = agf( "), so

g(¥) = gai (@) + g(v)
= a2 f(@') + az(a)
= ax(f(@) + a),

and then taking an equivalence class, f(@') 4+ a =@ in A/im f> 80 0 does not depend on the choice of ¥'.
Suppose a and @ are both such that as(a) = az(a) = g(b'). As as is injective, a = a.

Now we show exactness at d.
To see that im 51 = ker §, we first show that im 61 C kerd. Let z € im 61, i.e., there exists w € ker g such
that 61( ) = x; we need to show é(x) = 0. See that

§(z) =z~ 'gp ! (2)
As ¢ is independent of choice, choose w € ker g C B’ to be 3, *(z). Then
ar ghH(x) = axg(w) = a7 (0) = 0,

and z € ker d, as desired. .
We next show that kerd C im 3. Let & € kerd; i.e., 6(x) = 0. We need to show that there exists
w € ker g such that 8;(w) = z. Since

§(x) = as 9B (z) = 0,
d(x) lifts to an element f(y) € A for some y € A’. By commutativity of the square
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so /17 (x) — ai(y) € kerg. Thus let w = 31 (2) — a1 (y) € ker g, and

E(w) = E(ﬁl_l(ff) —a1(y) = BB (@) —ar(y) = BB (@) — Prea(y) =z — 0=z,

as desired.
To see that im 6 = ker a3, we first show that im 6 C ker aiz. Let T € im ; i.e., there exists w € ker h such
that 6(w) = T; we need to show that az(Z) = 0. See that

S(w) = az~'gfy " w) =7

azan ' gB T (w) = aa(T)
9617 (w) = as(®),
so a9 (T) is in the image of g, and hence its equivalence class, equal to a3(T) by commutativity of the square
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is 0 in B/img' Thus T € ker ag.

We next show that keras C imd. Let T 6 ker ag; i.e., a3(Z) = 0. We need to show that there exists
w € ker h such that 6(w) =T. As a2(Z) =0 in /1mg’ it hfts to an element g(y) € B where y € B’, and the
following square commutes:

B/
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Take w = B1(y). It is enough to show that w € ker h, for then

S(w) = "gh N (w) = gB T Bi(y) = o gly) =7,
as desired. To see that w € ker h, see that h(w) = hf;1(y) is, by the commutativity of the square below,

B/ B1 C«/

B2g(y). Now, g(y) = as(x), so B29(y) = Baaz(x) =0, and w € ker h, as desired.
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Finally, assume A’ — B’ is monic and B — C is epi. We show ker f — ker g is monic and coker g —
coker h is epi.

If A’ 2% B’ is monic, then a;(z) = 0 implies z = 0. We need to show that if ai(z) = 0, then z = 0.
Suppose a7 (x) = 0. By definition, a7(z) = a1(z) =0, s0 z =0 in B’. As kerg < B’ is injective, z = 0 in
ker g, as desired.

B2 s epi, then for any ¢ € C, there exists b € B such that £2(b) = ¢. We need to show that if
(s C/im p, then there exists be B/img such that E;(B) =c¢c Letce C/im p- It has some lift ¢ € C. By

surjectivity of Bo, there exists b € B such that B2(b) = c. Take the equivalence class of b, namely b, and then
by commutativity of
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%(5) = ¢, as desired. .



