
The Snake Lemma

Theorem Consider a commutative diagram of R-modules of the form

A′ B′ C ′ 0

0 A B C

α1

f

β1

g h

α2 β2

If the rows are exact, then there is an exact sequence

ker(f)→ ker(g)→ ker(h)
δ−→ coker(f)→ coker(g)→ coker(h),

where δ : ker(h) → coker(f) is the map δ(c′) = α2
−1gβ1

−1(c′). Furthermore, if A′ → B′ is monic, then so
is ker(f)→ ker(g), and if B → C is epi, then so is coker(g)→ coker(h).

Proof. The snake picture to have in mind is as follows:

ker f ker g kerh

A′ B′ C ′ 0

0 A B C

coker f coker g cokerh

δ

Notice that the columns create long exact sequences:

0 0 0

ker f ker g kerh

A′ B′ C ′ 0

0 A B C

coker f coker g cokerh

0 0 0

α̃1 β̃1

α1

f

β1

g h

α2 β2

α̃2 β̃2

We first show that the maps ker f
α̃1−→ ker g, ker g

β̃1−→ kerh, coker f
α̃2−→ coker g, and coker g

β̃2−→ cokerh

are well-defined, where the kernel maps are restriction of the corresponding A′
α1−→ B′ and B′

β1−→ C ′ and

the cokernel maps are restriction of the corresponding A
α2−→ B and B

β2−→ C.
Let a′ ∈ ker f . We need to show that α̃1(a′) ∈ ker g. As ker f ↪→ A′, a′ ∈ A′. As a′ ∈ ker f , f(a′) = 0,

and α2f(a′) = 0. As the square commutes, gα1(a′) = 0, so α1(a′) ∈ ker g, and thus α̃1(a′) = α1(a′) ∈ ker g.
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ker f ker g
a′ α̃1(a′)

A′ B′
a′ α1(a′)

A B
0 0

α̃1

α1

f g

α2

Let b′ ∈ ker g. We need to show that β̃1(b′) ∈ kerh. As ker g ↪→ B′, b′ ∈ B′. As b′ ∈ ker g, g(b′) = 0, and

β2g(b′) = 0. As the square commutes, hβ1(b′) = 0, so β1(b′) ∈ kerh, and thus β̃1(b′) = β1(b′) ∈ kerh.

ker g kerh
b′ β̃1(b′)

B′ C ′
b′ β1(b′)

B C
0 0

β̃1

β1

g h

β2

Let a ∈ coker f = A�im f . We need to show that α̃2(a) ∈ coker g = B�im g. In other words, we must show

that α2 : A→ B maps elements in the image of f to elements in the image of g. Let a′ ∈ A′. Then f(a′) ∈ A
is in the image of f , and α2 maps it to α2f(a′). By the commutativaty of the square, α2f(a′) = gα1(a′), so
α2 maps an element in the image of f to an element in the image of g, as desired.

A′ B′
a′ α1(a′)

A B
f(a′) gα1(a′)

α1

f g

α2

Let b ∈ coker g = B�im g. We need to show that β̃2(b) ∈ cokerh = C�imh. In other words, we must show

that β2 : B → C maps elements in the image of g to elements in the image of h. Let b′ ∈ B′. Then g(b′) ∈ B
is in the image of g, and β2 maps it to β2g(b′). By the commutativity of the square, β2g(b′) = hβ1(b′), so β2
maps an element in the image of g to an element in the image of h, as desired.

B′ C ′
b′ β1(b′)

B C
g(b′) hβ1(b′)

β1

g h

β2

We next show exactness of ker f
α̃1−→ ker g

β̃1−→ kerh
δ−→ coker f

α̃2−→ coker g
β̃2−→ cokerh at all stages except

δ.
To see that im α̃1 = ker β̃1, we first show that im α̃1 ⊆ ker β̃1. Indeed, let x ∈ im α̃1. Then we compute

β̃1(x). Since x ∈ im α̃1, there is some w ∈ ker f such that α̃1(w) = x. Then α1(w) = x in B′, and by
exactness of A′ → B′ → C ′, β1(x) = 0. By injectivity of kerh ↪→ C ′ and commutativity of the square,

β̃1(x) = 0, so x ∈ ker β̃1, as desired.
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ker f ker g kerh
w x 0

A′ B′ C ′
w x 0

α̃1 β̃1

α1 β1

We next show that ker β̃1 ⊆ im α̃1. Let x ∈ ker β̃1; then β̃1(x) = 0. Thus, β1(x) = 0, and by exactness of
A′ → B′ → C ′, x ∈ imα1, so there exists w ∈ A′ such that α1(w) = x. If w ∈ ker f , we are done, for then
α̃1(w) = α1(w) = x, and x ∈ im α̃1, as desired. To see that w ∈ ker f , see that x ∈ ker g, so g(x) = 0. By
commutativity of the square, α2f(w) = 0. By injectivity of α2, f(w) = 0, and thus w ∈ ker f , as we needed
to show.

ker f ker g kerh
x 0

A′ B′ C ′
w x 0

0 A B C
f(w)
=0 0

α̃1 β̃1

α1

f

β1

g h

α2 β2

To see that im α̃2 = ker β̃2, we first show that im α̃2 ⊆ ker β̃2. Indeed, let x ∈ im α̃2. Then we compute

β̃2(x). Since x ∈ im α̃2, there is some w ∈ coker f such that α̃2(w) = x. Then α2(w) = x in B for some
representatives w and x, and by exactness of A → B → C, β2(x) = 0. By commutativity of the square,

β̃2(x) = 0, so x ∈ ker β̃2, as desired.

A B C
w x 0

A�im f
B�im g

C�imh
w x 0

α2 β2

α̃2 β̃2

We next show that ker β̃2 ⊆ im α̃2. Let x ∈ ker β̃2; then β̃2(x) = 0. 0 lifts to some element h(y) ∈ C where
y ∈ C ′, while x lifts to x. By surjectivity of β1, there is some z ∈ B′ such that β1(z) = y. By commutativity
of the square, β2g(z) = h(y). Also, β2(x) = h(y). Thus, x− g(z) ∈ kerβ2, and by exactness of A→ B → C,
there is some w ∈ A such that α2(w) = x− g(z). Taking equivalence classes, we have α̃2(w) = x− g(z) = x

in B�im g, and thus x ∈ im α̃2, as desired.

B′ C ′ 0z y

A B C
w x−

g(z) h(y)

A�im f
B�im g

C�imh
w x 0

g

β1

h

α2 β2

α̃2 β̃2
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Next, we show δ is a well-defined map. Recall that δ : kerh → coker f is defined to be α2
−1gβ1

−1. Let
c′ ∈ kerh; then c′ ∈ C ′. As β1 is surjective, there exists some b′ ∈ B′ such that β1(b′) = c′. Map b′ to g(b′)
in B; then by commutativity of the following square:

kerh
c′

B′ C ′ 0
b′ c′

B C
g(b′) 0

β1

g h

β2

β2g(b′) = 0, so g(b′) ∈ kerβ2 = imα2. Thus there exists a ∈ A such that α2(a) = g(b′). Define δ(c′) = a. It
remains to be seen that δ does not depend on the choice of b′ or a.

Suppose b′ and b̃′ both are such that β1(b′) = β1(̃b′) = c′. Then β1(̃b′−b′) = 0, so b̃′−b′ ∈ kerβ1 = imα1,

so α1(ã′) = b̃′ − b′ for some ã′ ∈ A′; i.e., b̃′ = α1(ã′) + b′. Then g(̃b′) = g(α1(ã′) + b′) = gα1(ã′) + g(b′). By
commutativity of the square, gα1(ã′) = α2f(ã′), so

g(̃b′) = gα1(ã′) + g(b′)

= α2f(ã′) + α2(a)

= α2(f(ã′) + a),

and then taking an equivalence class, f(ã′) + a = a in A�im f , so δ does not depend on the choice of b′.

Suppose a and ã are both such that α2(a) = α2(ã) = g(b′). As α2 is injective, a = ã.

Now we show exactness at δ.
To see that im β̃1 = ker δ, we first show that im β̃1 ⊆ ker δ. Let x ∈ im β̃1; i.e., there exists w ∈ ker g such

that β̃1(w) = x; we need to show δ(x) = 0. See that

δ(x) = α2
−1gβ1

−1(x)

As δ is independent of choice, choose w ∈ ker g ⊆ B′ to be β1
−1(x). Then

α2
−1gβ1

−1(x) = α2
−1g(w) = α2

−1(0) = 0,

and x ∈ ker δ, as desired.

We next show that ker δ ⊆ im β̃1. Let x ∈ ker δ; i.e., δ(x) = 0. We need to show that there exists

w ∈ ker g such that β̃1(w) = x. Since

δ(x) = α2
−1gβ1

−1(x) = 0,

δ(x) lifts to an element f(y) ∈ A for some y ∈ A′. By commutativity of the square

A′ B′
y α1(y)

A B
f(y) α2f(y)=gα1(y)=

gβ1
−1(x)

A�im f
δ(x)

f

α1

g

α2
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so β1
−1(x)− α1(y) ∈ ker g. Thus let w = β1

−1(x)− α1(y) ∈ ker g, and

β̃1(w) = β̃1(β1
−1(x)− α1(y)) = β1(β1

−1(x)− α1(y)) = β1β1
−1(x)− β1α1(y) = x− 0 = x,

as desired.
To see that im δ = ker α̃2, we first show that im δ ⊆ ker α̃2. Let x ∈ im δ; i.e., there exists w ∈ kerh such

that δ(w) = x; we need to show that α̃2(x) = 0. See that

δ(w) = α2
−1gβ1

−1(w) = x

α2α2
−1gβ1

−1(w) = α2(x)

gβ1
−1(w) = α2(x),

so α2(x) is in the image of g, and hence its equivalence class, equal to α̃2(x) by commutativity of the square

A B
x α2(x)

A�im f
B�im g

x α2(x)=
α̃2(x)

α2

α̃2

is 0 in B�im g. Thus x ∈ ker α̃2.

We next show that ker α̃2 ⊆ im δ. Let x ∈ ker α̃2; i.e., α̃2(x) = 0. We need to show that there exists

w ∈ kerh such that δ(w) = x. As α̃2(x) = 0 in B�im g, it lifts to an element g(y) ∈ B where y ∈ B′, and the

following square commutes:

B′y

A B
x g(y)

A�im f
B�im g

x 0

α2

α̃2

Take w = β1(y). It is enough to show that w ∈ kerh, for then

δ(w) = α2
−1gβ1

−1(w) = α2
−1gβ1

−1β1(y) = α2
−1g(y) = x,

as desired. To see that w ∈ kerh, see that h(w) = hβ1(y) is, by the commutativity of the square below,

B′ C ′
y β1(y)

B C
g(y) hβ1(y)=

β2g(y)

β1

g h

β2

β2g(y). Now, g(y) = α2(x), so β2g(y) = β2α2(x) = 0, and w ∈ kerh, as desired.
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Finally, assume A′ → B′ is monic and B → C is epi. We show ker f → ker g is monic and coker g →
cokerh is epi.

If A′
α1−→ B′ is monic, then α1(x) = 0 implies x = 0. We need to show that if α̃1(x) = 0, then x = 0.

Suppose α̃1(x) = 0. By definition, α̃1(x) = α1(x) = 0, so x = 0 in B′. As ker g ↪→ B′ is injective, x = 0 in
ker g, as desired.

If B
β2−→ C is epi, then for any c ∈ C, there exists b ∈ B such that β2(b) = c. We need to show that if

c ∈ C�imh, then there exists b ∈ B�im g such that β̃2(b) = c. Let c ∈ C�imh. It has some lift c ∈ C. By

surjectivity of β2, there exists b ∈ B such that β2(b) = c. Take the equivalence class of b, namely b, and then
by commutativity of

B C 0
b c

B�im g
C�imh

b c

β2

β̃2

β̃2(b) = c, as desired.
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