The Snake Lemma

Theorem Consider a commutative diagram of R-modules of the form

If the rows are exact, then there is an exact sequence

$$
\operatorname{ker}(f) \rightarrow \operatorname{ker}(g) \rightarrow \operatorname{ker}(h) \xrightarrow{\delta} \operatorname{coker}(f) \rightarrow \operatorname{coker}(g) \rightarrow \operatorname{coker}(h),
$$

where $\delta: \operatorname{ker}(h) \rightarrow \operatorname{coker}(f)$ is the map $\delta\left(c^{\prime}\right)=\alpha_{2}{ }^{-1} g \beta_{1}{ }^{-1}\left(c^{\prime}\right)$. Furthermore, if $A^{\prime} \rightarrow B^{\prime}$ is monic, then so is $\operatorname{ker}(f) \rightarrow \operatorname{ker}(g)$, and if $B \rightarrow C$ is epi, then so is $\operatorname{coker}(g) \rightarrow \operatorname{coker}(h)$.

Proof. The snake picture to have in mind is as follows:

Notice that the columns create long exact sequences:

We first show that the maps $\operatorname{ker} f \xrightarrow{\widetilde{\alpha_{1}}} \operatorname{ker} g$, $\operatorname{ker} g \xrightarrow{\widetilde{\beta_{1}}} \operatorname{ker} h$, coker $f \xrightarrow{\widetilde{\alpha_{2}}}$ coker g, and coker $g \xrightarrow{\widetilde{\beta_{2}}}$ coker h are well-defined, where the kernel maps are restriction of the corresponding $A^{\prime} \xrightarrow{\alpha_{1}} B^{\prime}$ and $B^{\prime} \xrightarrow{\beta_{1}} C^{\prime}$ and the cokernel maps are restriction of the corresponding $A \xrightarrow{\alpha_{2}} B$ and $B \xrightarrow{\beta_{2}} C$.

Let $a^{\prime} \in \operatorname{ker} f$. We need to show that $\widetilde{\alpha_{1}}\left(a^{\prime}\right) \in \operatorname{ker} g$. As $\operatorname{ker} f \hookrightarrow A^{\prime}, a^{\prime} \in A^{\prime}$. As $a^{\prime} \in \operatorname{ker} f, f\left(a^{\prime}\right)=0$, and $\alpha_{2} f\left(a^{\prime}\right)=0$. As the square commutes, $g \alpha_{1}\left(a^{\prime}\right)=0$, so $\alpha_{1}\left(a^{\prime}\right) \in \operatorname{ker} g$, and thus $\widetilde{\alpha_{1}}\left(a^{\prime}\right)=\alpha_{1}\left(a^{\prime}\right) \in \operatorname{ker} g$.

Let $b^{\prime} \in \operatorname{ker} g$. We need to show that $\widetilde{\beta_{1}}\left(b^{\prime}\right) \in \operatorname{ker} h$. As $\operatorname{ker} g \hookrightarrow B^{\prime}, b^{\prime} \in B^{\prime}$. As $b^{\prime} \in \operatorname{ker} g, g\left(b^{\prime}\right)=0$, and $\beta_{2} g\left(b^{\prime}\right)=0$. As the square commutes, $h \beta_{1}\left(b^{\prime}\right)=0$, so $\beta_{1}\left(b^{\prime}\right) \in \operatorname{ker} h$, and thus $\widetilde{\beta_{1}}\left(b^{\prime}\right)=\beta_{1}\left(b^{\prime}\right) \in \operatorname{ker} h$.

Let $a \in \operatorname{coker} f=A / \mathrm{im} f$. We need to show that $\widetilde{\alpha_{2}}(a) \in \operatorname{coker} g=B / \mathrm{im} g$. In other words, we must show that $\alpha_{2}: A \rightarrow B$ maps elements in the image of f to elements in the image of g. Let $a^{\prime} \in A^{\prime}$. Then $f\left(a^{\prime}\right) \in A$ is in the image of f, and α_{2} maps it to $\alpha_{2} f\left(a^{\prime}\right)$. By the commutativaty of the square, $\alpha_{2} f\left(a^{\prime}\right)=g \alpha_{1}\left(a^{\prime}\right)$, so α_{2} maps an element in the image of f to an element in the image of g, as desired.

Let $b \in \operatorname{coker} g=B / \mathrm{im} g$. We need to show that $\widetilde{\beta_{2}}(b) \in \operatorname{coker} h=C / \mathrm{im} h$. In other words, we must show that $\beta_{2}: B \rightarrow C$ maps elements in the image of g to elements in the image of h. Let $b^{\prime} \in B^{\prime}$. Then $g\left(b^{\prime}\right) \in B$ is in the image of g, and β_{2} maps it to $\beta_{2} g\left(b^{\prime}\right)$. By the commutativity of the square, $\beta_{2} g\left(b^{\prime}\right)=h \beta_{1}\left(b^{\prime}\right)$, so β_{2} maps an element in the image of g to an element in the image of h, as desired.

We next show exactness of $\operatorname{ker} f \xrightarrow{\widetilde{\alpha_{1}}} \operatorname{ker} g \xrightarrow{\widetilde{\beta_{1}}} \operatorname{ker} h \xrightarrow{\delta} \operatorname{coker} f \xrightarrow{\widetilde{\alpha_{2}}} \operatorname{coker} g \xrightarrow{\widetilde{\beta_{2}}}$ coker h at all stages except δ.

To see that $\operatorname{im} \widetilde{\alpha_{1}}=\operatorname{ker} \widetilde{\beta_{1}}$, we first show that $\operatorname{im} \widetilde{\alpha_{1}} \subseteq \operatorname{ker} \widetilde{\beta_{1}}$. Indeed, let $x \in \operatorname{im} \widetilde{\alpha_{1}}$. Then we compute $\widetilde{\beta_{1}}(x)$. Since $x \in \operatorname{im} \widetilde{\alpha_{1}}$, there is some $w \in \operatorname{ker} f$ such that $\widetilde{\alpha_{1}}(w)=x$. Then $\alpha_{1}(w)=x$ in B^{\prime}, and by exactness of $A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime}, \beta_{1}(x)=0$. By injectivity of ker $h \hookrightarrow C^{\prime}$ and commutativity of the square, $\widetilde{\beta_{1}}(x)=0$, so $x \in \operatorname{ker} \widetilde{\beta_{1}}$, as desired.

We next show that $\operatorname{ker} \widetilde{\beta_{1}} \subseteq \operatorname{im} \widetilde{\alpha_{1}}$. Let $x \in \operatorname{ker} \widetilde{\beta_{1}}$; then $\widetilde{\beta_{1}}(x)=0$. Thus, $\beta_{1}(x)=0$, and by exactness of $A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime}, x \in \operatorname{im} \alpha_{1}$, so there exists $w \in A^{\prime}$ such that $\alpha_{1}(w)=x$. If $w \in \operatorname{ker} f$, we are done, for then $\widetilde{\alpha_{1}}(w)=\alpha_{1}(w)=x$, and $x \in \operatorname{im} \widetilde{\alpha_{1}}$, as desired. To see that $w \in \operatorname{ker} f$, see that $x \in \operatorname{ker} g$, so $g(x)=0$. By commutativity of the square, $\alpha_{2} f(w)=0$. By injectivity of $\alpha_{2}, f(w)=0$, and thus $w \in \operatorname{ker} f$, as we needed to show.

To see that $\operatorname{im} \widetilde{\alpha_{2}}=\operatorname{ker} \widetilde{\beta_{2}}$, we first show that $\operatorname{im} \widetilde{\alpha_{2}} \subseteq \operatorname{ker} \widetilde{\beta_{2}}$. Indeed, let $\bar{x} \in \operatorname{im} \widetilde{\alpha_{2}}$. Then we compute $\widetilde{\beta_{2}}(\bar{x})$. Since $\bar{x} \in \operatorname{im} \widetilde{\alpha_{2}}$, there is some $\bar{w} \in \operatorname{coker} f$ such that $\widetilde{\alpha_{2}}(\bar{w})=\bar{x}$. Then $\alpha_{2}(w)=x$ in B for some representatives w and x, and by exactness of $A \rightarrow B \rightarrow C, \beta_{2}(x)=0$. By commutativity of the square, $\widetilde{\beta_{2}}(\bar{x})=0$, so $\bar{x} \in \operatorname{ker} \widetilde{\beta_{2}}$, as desired.

We next show that $\operatorname{ker} \widetilde{\beta_{2}} \subseteq \operatorname{im} \widetilde{\alpha_{2}}$. Let $\bar{x} \in \operatorname{ker} \widetilde{\beta_{2}}$; then $\widetilde{\beta_{2}}(\bar{x})=0.0$ lifts to some element $h(y) \in C$ where $y \in C^{\prime}$, while \bar{x} lifts to x. By surjectivity of β_{1}, there is some $z \in B^{\prime}$ such that $\beta_{1}(z)=y$. By commutativity of the square, $\beta_{2} g(z)=h(y)$. Also, $\beta_{2}(x)=h(y)$. Thus, $x-g(z) \in \operatorname{ker} \beta_{2}$, and by exactness of $\underline{A \rightarrow B \rightarrow C}$, there is some $w \in A$ such that $\alpha_{2}(w)=x-g(z)$. Taking equivalence classes, we have $\widetilde{\alpha_{2}}(\bar{w})=\overline{x-g(z)}=\bar{x}$ in $B / \operatorname{im} g$, and thus $\bar{x} \in \operatorname{im} \widetilde{\alpha_{2}}$, as desired.

Next, we show δ is a well-defined map. Recall that $\delta: \operatorname{ker} h \rightarrow$ coker f is defined to be $\alpha_{2}{ }^{-1} g \beta_{1}{ }^{-1}$. Let $c^{\prime} \in \operatorname{ker} h$; then $c^{\prime} \in C^{\prime}$. As β_{1} is surjective, there exists some $b^{\prime} \in B^{\prime}$ such that $\beta_{1}\left(b^{\prime}\right)=c^{\prime}$. Map b^{\prime} to $g\left(b^{\prime}\right)$ in B; then by commutativity of the following square:

$\beta_{2} g\left(b^{\prime}\right)=0$, so $g\left(b^{\prime}\right) \in \operatorname{ker} \beta_{2}=\operatorname{im} \alpha_{2}$. Thus there exists $a \in A$ such that $\alpha_{2}(a)=g\left(b^{\prime}\right)$. Define $\delta\left(c^{\prime}\right)=\bar{a}$. It remains to be seen that δ does not depend on the choice of b^{\prime} or a.

Suppose b^{\prime} and \widetilde{b}^{\prime} both are such that $\beta_{1}\left(b^{\prime}\right)=\beta_{1}\left(\widetilde{b^{\prime}}\right)=c^{\prime}$. Then $\beta_{1}\left(\widetilde{b^{\prime}}-b^{\prime}\right)=0$, so $\widetilde{b^{\prime}}-b^{\prime} \in \operatorname{ker} \beta_{1}=\operatorname{im} \alpha_{1}$, so $\alpha_{1}\left(\widetilde{a}^{\prime}\right)=\widetilde{b}^{\prime}-b^{\prime}$ for some $\widetilde{a}^{\prime} \in A^{\prime}$; i.e., $\widetilde{b}^{\prime}=\alpha_{1}\left(\widetilde{a}^{\prime}\right)+b^{\prime}$. Then $g\left(\widetilde{b^{\prime}}\right)=g\left(\alpha_{1}\left(\widetilde{a}^{\prime}\right)+b^{\prime}\right)=g \alpha_{1}\left(\widetilde{a}^{\prime}\right)+g\left(b^{\prime}\right)$. By commutativity of the square, $g \alpha_{1}\left(\widetilde{a}^{\prime}\right)=\alpha_{2} f\left(\widetilde{a}^{\prime}\right)$, so

$$
\begin{aligned}
g\left(\widetilde{b^{\prime}}\right) & =g \alpha_{1}\left(\widetilde{a}^{\prime}\right)+g\left(b^{\prime}\right) \\
& =\alpha_{2} f\left(\widetilde{a}^{\prime}\right)+\alpha_{2}(a) \\
& =\alpha_{2}\left(f\left(\widetilde{a}^{\prime}\right)+a\right),
\end{aligned}
$$

and then taking an equivalence class, $\overline{f\left(\widetilde{a}^{\prime}\right)+a}=\bar{a}$ in $A /$ im f, so δ does not depend on the choice of b^{\prime}.
Suppose a and \widetilde{a} are both such that $\alpha_{2}(a)=\alpha_{2}(\widetilde{a})=g\left(b^{\prime}\right)$. As α_{2} is injective, $a=\widetilde{a}$.

Now we show exactness at δ.
To see that $\operatorname{im} \widetilde{\beta_{1}}=\operatorname{ker} \delta$, we first show that $\operatorname{im} \widetilde{\beta_{1}} \subseteq \operatorname{ker} \delta$. Let $x \in \operatorname{im} \widetilde{\beta_{1}}$; i.e., there exists $w \in \operatorname{ker} g$ such that $\widetilde{\beta_{1}}(w)=x$; we need to show $\delta(x)=0$. See that

$$
\delta(x)=\alpha_{2}^{-1} g \beta_{1}^{-1}(x)
$$

As δ is independent of choice, choose $w \in \operatorname{ker} g \subseteq B^{\prime}$ to be $\beta_{1}^{-1}(x)$. Then

$$
\alpha_{2}^{-1} g \beta_{1}^{-1}(x)=\alpha_{2}^{-1} g(w)=\alpha_{2}^{-1}(0)=0
$$

and $x \in \operatorname{ker} \delta$, as desired.
We next show that $\operatorname{ker} \delta \subseteq \operatorname{im} \widetilde{\beta_{1}}$. Let $x \in \operatorname{ker} \delta$; i.e., $\delta(x)=0$. We need to show that there exists $w \in \operatorname{ker} g$ such that $\widetilde{\beta_{1}}(w)=x$. Since

$$
\delta(x)=\alpha_{2}^{-1} g \beta_{1}^{-1}(x)=0,
$$

$\delta(x)$ lifts to an element $f(y) \in A$ for some $y \in A^{\prime}$. By commutativity of the square

so $\beta_{1}^{-1}(x)-\alpha_{1}(y) \in \operatorname{ker} g$. Thus let $w=\beta_{1}^{-1}(x)-\alpha_{1}(y) \in \operatorname{ker} g$, and

$$
\widetilde{\beta_{1}}(w)=\widetilde{\beta_{1}}\left(\beta_{1}^{-1}(x)-\alpha_{1}(y)\right)=\beta_{1}\left(\beta_{1}^{-1}(x)-\alpha_{1}(y)\right)=\beta_{1} \beta_{1}^{-1}(x)-\beta_{1} \alpha_{1}(y)=x-0=x,
$$

as desired.
To see that $\operatorname{im} \delta=\operatorname{ker} \widetilde{\alpha_{2}}$, we first show that $\operatorname{im} \delta \subseteq \operatorname{ker} \widetilde{\alpha_{2}}$. Let $\bar{x} \in \operatorname{im} \delta$; i.e., there exists $w \in \operatorname{ker} h$ such that $\delta(w)=\bar{x}$; we need to show that $\widetilde{\alpha_{2}}(\bar{x})=0$. See that

$$
\begin{aligned}
\delta(w)=\alpha_{2}^{-1} g \beta_{1}^{-1}(w) & =\bar{x} \\
\alpha_{2} \alpha_{2}^{-1} g \beta_{1}^{-1}(w) & =\alpha_{2}(\bar{x}) \\
g \beta_{1}^{-1}(w) & =\alpha_{2}(\bar{x}),
\end{aligned}
$$

so $\alpha_{2}(\bar{x})$ is in the image of g, and hence its equivalence class, equal to $\widetilde{\alpha_{2}}(\bar{x})$ by commutativity of the square

is 0 in $B / \mathrm{im} g$. Thus $\bar{x} \in \operatorname{ker} \widetilde{\alpha_{2}}$.
We next show that $\operatorname{ker} \widetilde{\alpha_{2}} \subseteq \operatorname{im} \delta$. Let $\bar{x} \in \operatorname{ker} \widetilde{\alpha_{2}}$; i.e., $\widetilde{\alpha_{2}}(\bar{x})=0$. We need to show that there exists $w \in \operatorname{ker} h$ such that $\delta(w)=\bar{x}$. As $\widetilde{\alpha_{2}}(\bar{x})=0$ in $B /$ im g, it lifts to an element $g(y) \in B$ where $y \in B^{\prime}$, and the following square commutes:

Take $w=\beta_{1}(y)$. It is enough to show that $w \in \operatorname{ker} h$, for then

$$
\delta(w)=\alpha_{2}^{-1} g \beta_{1}^{-1}(w)=\alpha_{2}^{-1} g \beta_{1}^{-1} \beta_{1}(y)=\alpha_{2}^{-1} g(y)=\bar{x},
$$

as desired. To see that $w \in \operatorname{ker} h$, see that $h(w)=h \beta_{1}(y)$ is, by the commutativity of the square below,

$\beta_{2} g(y)$. Now, $g(y)=\alpha_{2}(x)$, so $\beta_{2} g(y)=\beta_{2} \alpha_{2}(x)=0$, and $w \in \operatorname{ker} h$, as desired.

Finally, assume $A^{\prime} \rightarrow B^{\prime}$ is monic and $B \rightarrow C$ is epi. We show ker $f \rightarrow$ ker g is monic and coker $g \rightarrow$ coker h is epi.

If $A^{\prime} \xrightarrow{\alpha_{1}} B^{\prime}$ is monic, then $\alpha_{1}(x)=0$ implies $x=0$. We need to show that if $\widetilde{\alpha_{1}}(x)=0$, then $x=0$. Suppose $\widetilde{\alpha_{1}}(x)=0$. By definition, $\widetilde{\alpha_{1}}(x)=\alpha_{1}(x)=0$, so $x=0$ in B^{\prime}. As ker $g \hookrightarrow B^{\prime}$ is injective, $x=0$ in ker g, as desired.

If $B \xrightarrow{\beta_{2}} C$ is epi, then for any $c \in C$, there exists $b \in B$ such that $\beta_{2}(b)=c$. We need to show that if $\bar{c} \in C / \mathrm{im} h$, then there exists $\bar{b} \in B / \mathrm{im} g$ such that $\widetilde{\beta_{2}}(\bar{b})=\bar{c}$. Let $\bar{c} \in C / \mathrm{im} h$. It has some lift $c \in C$. By surjectivity of β_{2}, there exists $b \in B$ such that $\beta_{2}(b)=c$. Take the equivalence class of b, namely \bar{b}, and then by commutativity of

$\widetilde{\beta_{2}}(\bar{b})=\bar{c}$, as desired.

